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Intervals

Abatract—

in Evolutionary Algorithms for
Global Optimization

Rajendra ?3. Patil

Optimisation i. of central con-

cern to ● number of disciplines. Interv-

al Arithmetic methods for global optimisa-

tion provide us with (guaranteed) verified

results [6]. These methods Fre mainly re-
stricted to the clames of objective functions

that are twice differentiable and use a sim-

ple strategy of eliminating a splitting larger

regions of search space in the global opti-

mitiation process. This is done by estimat-
ing the bounds of the given fb.nction over

intervals using methods from interval arith-
metic. When applied to arbitrary compli-

cated objective functionu theme methods com-

pute overly pessimistic over-estimationa of

the bounds and therefore cannot be effi-

ciently applied.

Evolutionary search algorithms are heuristic

global optimitiation techniques in the sense
that they do not provide a guaranteed (ver-

ified) result. Many models of the Evolution-
ary Algorithms are empirically proven to be

robust and have demonstrated their capabil-

ity to produce good solutions in many com-

plex optimisation problems. These methods

require very little knowledge about the struc-

ture of the search space of the problem at

hand, so they are naturally applied to prob-

lem- whose structure is poorly understood.

Thiu includes the cases where the exact func-

tion to be optimised is unknown. In such

case~ the Interval Methods of Global Opti-

mization cannot be applied. The disadvan-
tages of Evolutionary Algorithms for global

optimisation are that they are compute in-

tensive, do not provided verified results and
have complex dynamics making the theoreti-

cal proofs of their efllciency and convergence

difllcult.

An ●fficient approach that combines the ef-

flchmt strategy from Interval Global Opti-
mization Methods and robustneuo of the Evo-

lutionary Algorithm is proposed. In the pro-
posed approach, search beglnu with randomly

created interval vectors with interval widths

equal to the whole domain. Before the be-

ginning of the evolutionary process, fitness

of these interval parameter vectors is defined
by evaluating the objective function at the

center of th~ initial interval vectors. In the

subsequent evolutionary process the local op-

timization process returns an estimate of the

bounds (lower or upper for minimisation or
maximisation) of the objective function over

the interval vectors. Though these bounds

may not be correct at the beginning due to
large interval widths and complicated func-

tion properties, the process of reducing in-

terd widths over time and a selection ap-

proach similar to simulated annealing helps

in estimating reasonably correct bounds as

the population evolves. The interval param-

eter vectors at these estimated bounds (local

optima) are then oubjected to crossover and

mutation operators. This evolutionary pro-
cess continues for predetermined number of

generations in the search of the global opti-
mum.

In the proposed approach, though the ver-
ified nature of the Interval Global Optimiza-

tion Methods is not preserved, empirical

results over standard benchmark functions

has shown to have preserved the efficiency

and robustness properties of the two ap-

proached. The proposed approach is bench-

marked against Parallel Genetic Algorithm

and is obnerved to be more robust and in

some cases order of magnitude efficient.

1. INTRODUCTION

Optimisation in of central concern to a number of
disciplines in which numerical information in pro-
ceaaed. Many problem oolving methcdn in opera-
tions reacarch, applied mathematics and artificial
intelligence (Al) have an optimization procedure aa
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a subcomponent and the performance of these tech-

niques hinges critically on the quality of the op
timisation technique. The problem characteristics
decides if the optimisation- ia constrained or uncon-
strained and whet+” the parameter space is contin-
uous or discrete. In either case, the search method
used to search for an optimum could be local or
global, deterministic O: stochastic, or in some caaes
a combination of these.

OptimW,ion ia concerned with the characterisa-
tion and computation of minima or maxima of a
function j(=). Given,

f: X~X1x X3x... xXm+R, X#tl (1)

where ~ is called the objective function, the goal is
to find a vector z- E X such that:

vs~x:f(q~ f(=)=f” (2)

where f’ “~ called the global minimum and Z-
is the minimum location point or a act. Since

rnac{f(z~}= -min{-f(z~}, the restriction tc min-
imisation is without 10SSof generality. In general the
optimisation taak is complicated by the ●xistence of
non-i~near objective function with multiple local op
tima. A local optimum ~’ = f(d) is defined by the
following condition

3c>o, v: Ex:/l:– s’ll<caf’ <f(5) (3)

Even if there is only one optimum, it may be dif-
ficult to find a path towards it if there is a di-

continuity in the objective function or its deriva-
tives. Wide variety of methodn for finding globs!
solutions to zonlinear optimisation problems have
been proposed. In this paper we will concentrate
on global unconstrained optimisation uoing interval
baaed evolutionary search.

Traditional calculus based methods assume that
the objective function f(~) (and constraints in con-
straint optimisation) are twice continuously differ-
entiable functions of 5, These methode rquire ex-
plicit or implicit second derivative calculations of

che objective function which in some c~e.s can be
ill-conditioned and cause the algorithn. 10 fail. Dur-
ing the !aat 30 years there has been considerable re-
search directed towarde the nonlinear optimization
problems and progress has been made in theory and
practice [12]

In general there iu no known method for deter-

mining global maximum (or minimum) to the gen-
eral nonlinear optimisation problem. Only if the ob-
jrctive function / (and the constraints ci) satisfies
certain propertied, the global optimum can Bome-
timee be found. algorithms for constraint problems
are usually classified an indirect and direct methodB.
An indirect method solves the problems by extract-
ing one or more linear problemo from the original

one, whereas a direct method tries to determine suc-
cessive search points. This is usually done by con-
verting the original problem into unconstraintxi one
for which gradient methods are applied with some
modifications [14].

There are many other problems conneded with
traditional optimisation techniques. For example,
moat proposed methods are Iccal in scope, they de-
pend on existence of derivatives, and they are insuf-
ficiently robust in discontinutics, vast multi-modal,
or noisy search spaces [10]. Indeed, for many rtml
world prob:ema it may be impossible to find deriva-
kivcq off or in some situakss f may not be known
at all. In those casca the only way ?.o get informat-
ion about the function is to evaluate it at different
values of i. The performance of moat optimisation
techniques is thus companxl using the number of
function evaluations required to find the op~imum.
In this regard, it is important to investigate other
heuristic methods which may prove useful in many
real world problems. The restricted cases where
the parameter space can be searched exhaustively
or the objective function can be Gubjected to ana-
lytical methods are not considered here.

The main reasons for the failure of many op
timixation algorithms are, the algorithm can get

trapped in a local optimum (known = the foothill

problem), it can get trappd in mostly flat surfaces
with few sharp peaks (called the plateau problem),

or it c~n get trapped because the direction of ascent
(or descent) is not within the direction of search
motion (known as the ridge problem) [7].

A. Evolutionary Computations

Evolutionary computation belongs to a large class
of methods which attempts to optimise a function
using a strategy essentially independent of the prob
lem at hand. These methods require very little

knowledge about the structure of the search space of
the problem at hand, so they are natursll~- applied

to problems whose etructure is poorly understood.

Evolutionary algorithms ar~ population baaed
search strategies that maintain the locations of a

set of probes in the function parameter space, The
standard of comparison for which new probes are
generated or old probes are discarded is a function
of exi~ting probe population. Combinations of indi-
vidual probes in the population are used to derive

new prohcs, The probe pr?ulation is arbitrarily ini-
tialized, and it evolves towards better and better
regions of the search space by means of random-
ised processes of aeiection (deterministic in some
cases), mutation, and recombination (not used in

some), The environment delivers a quality of infor-
mation, the fitness value (objective function value)
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of the d probe, and the edation procem favom
th- individual (pink) of higher fit= (%uvivd

of the fittat” ) to reproduce more often than worse

inchiduala. Ths recombiition mechaniam allowa
the mixing of parented inhmation while pauing it

to their d~ ta, and mutation introduces in-

novation into the prob- population. The, during

the evolution proceaa the average quality of popula-

tion (probee, aolutione) in~, hopefully leading

to optimum mlution.

The r=wtaphoric description of evolutionary alg-
rit!una can be put into more formal temm. Here we

uaethef~ “ developed in [29].

Let ~ : 3“ + ~ denote the objative function to
Je optimised. Let 5 E W be a probe. The search

algorithm may dirmtly uee 5 aa vecsora o: real nurn-

bem, or uae it in Borne encOrlaI form, ii= e(z~ (e.g.

bq, graycode). In some evolutionary algorithm,

S u wed u vector of male (Evolutionary Strategy),

whale in othem 5’h fit encoded into binary vector
d, and ia wed iu the process (Genetic Algorithms).
Inthapaper we~3aeavectm of intervals. Many

other repreeentationa are paaible. Solutions in the

-t -d ob@ population aeta are denoted p
andlA. The fitnuafunction q:3+~or@:d~Y?
definu the fitneaa value of an individual S or Z in Z
respectively. In general, fitnm function 4 and ok
jective function ~ are not required to be identical,

but~iaalwa.m mpartof~. while~Elieumd

to +note the representation of an individual used

in the pro=, 3 E W indicatee the objert variable
vector. In efkt, d = e(a~ where ●o ie come .ncod-
ing function. Ccrreapondingly there ia a &codiDg
function to get the objeciive vector 5 from encoded
vector & Furthermore, u >1 and A >1 denote the
parent and offipring population. A popul~tion at
generation t, P(z) = {El(t), . . . . dJt)} conaimta of in-
dividual d(t) E 1, and re, : 1A -D ZAdenotes the re-
combination operator which might be controlled by

additional parameters summarimd in aet e,. Simi-
larly the mutation operator m- = 1A -) i~ modi-
fiee the offspring population controlled by some pa-
rameter em. Selection #e, : (IM u ]~+~) + p

in applied tc choose the parent population of next
generation. During the evaluation step the fitnem
function @ : 1 ~ R ia calculated for all individu-
als of a population, and some form of termination
criterion, T : {true, falee} is used. The algorith-
mic dcacription of a typical evolutionary algorithm
u given below [29].

ALGORITHM 1: Evolutionary Search Algorithm
t=o;
ifbitinfiaeP(O) = {G1(0), .... dJO)] E P’;
ewdude P(O) : {@(dI(C))l . . . . ~(~~(o))}

whiie (7 # trye) do
recomke,P (t) = re. (~(t));
mwtete P ~t) = -C(P (t));
euakaie P (t) = {*(d;(t)), .. . . *(a:(t))];

-led: P(t + 1) = se, {P’’(t) U Q}

t=t+l;
●nd while

Here, Q E {., P(t)} ia a eet of individual that are
additionally taken into accountduring the eelection
step.

Some main#reama of Evolutionary Algorithms

(EA), W on model of natural ewolution are
Gmetic A40rithma (GA) [1S], C2a@er S@ema
(CS) [18] by Hollaud, the lhddioa Smatqy
(ES) [20, 21] by Rechenberg and SchWefel, Evolu-
thary Prwamming (EP) by Fogel, Owens and

Walah [143]and ~e+C %egrammiag (GP) [19] by
Km The approached mainly ditTer with rupect
to the atructu.re of the individual in the popuk
tion which d-tly in9uencu the recombination aud

mutation operatora. The ES and GA are powerful
methods for global optimisation, not needing any
more information about the objative function than

the actual value of the objative function. They do
not uae any predefine internal model of the objec-
tiw function. Each of these mahutream algorithm

have demomtrated their capabfity to yield good
apmcuimate aolutiom ●ven in caae of complicated
:aulti-modal, diecontinuouel non-differentiable, and
even no-my or dynamic objective function optimk
tion problerrm A variety of applicatioru have been
presented in [22] [23], [24], [25], [26], [271, [28], and
an annotated bibliography collected in [29]. Due to
their complexity, all EA algorithm lack mathemat-

ical proofi ~f general convergence and ef6ciency.

B. Interval ~earch and optimization: Motivation

Interval methods are aimed at finding the global op
timum of a twice differentiable objective function ~
defined on a hyper-rectangle X and having gradient
Vf and a Hessian Vat with only finite number of
(i601ated) seroa. Their eaeence in in evaluation of
imagea ~(Z), v~(Z), V2~(Z) for hyper-rectanglen
Z C X with the purpose of exclud’ng thoee which
cannot contain extremal points [4]. Interval meth-
ode for global optimisation find the global optimum
and provide bounds on its value arid location(a) that
are guaranteed to be correct deepite errora from
rounding, approximation, and uncertain data [6],
interval analysis alao providea a meam for doing
sensitivity analyoiO in a more definitive way, Interval
Newton methods have the diaadwmtage of needing
gradient information in explicit or iniplicit form,

Until recently, it wan thought that no numer-
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ical optimisation algorithm could guarantee hav-
ing found the global mlution of a general nonlin-
ear opti.miaation problem. Many ~chera aaid
U Nch a guarantee wu irn~b]e [6]. Their ar-
gument was bad on the otmavationa th, opti-
misation algorithm can aarnple the objective func-
tion and perlqm wxne of ita derivative at only fi-
nite number of distinct P&k Hence, there u
no way of knowing w hethcr a function to k opti-
miaad dip to some unexpectedly ●dl value be
twm sample pints. Tti u a rmsormble argu-
ment and it u probably true that no algorithm using
ntcdarcl arithmetic will ever guarantee finding the
global mlution k a general problem. However inter-
val rnethoda do not sample at pointa. They obtain

hounda for a function over a infinite continuum of

points [6]. Cormider the function (taken from [6]),
f(z) = z’ - 4=2, with rninirna at a = +21/2. Here
f(l) = –3 and ~([3, 4]) = [17, 220]. Thus, We kttOW

that j(z) z 17, Vz E [3,4], the minimum value of ~
u no larger than -3. Therefore, a minimum value of
~ rm.not w.cur in the interval [3,4]. To find this,
only two %valubtiona= of function ~ are needed.
Notice that ‘evalustioru” of ~ were over the inier-
vals. Function evaluatioua over interval ia an active
area or maearch and in an imporwmt part of inter-
val based ~ch rnethodn. Finding the bounds of
a given function ~ in an interval is the restricted

version of problem of optimization but simply over
a ■roller (pouaibly) domain. The intem-rd obtained
when evaluating an interval function dependa on the
form of the function. Considerable effort ham been
expended by interval analysts in attempting to pro-
duce systematic mcthodu for repreacnting an inter-

val function to meat sharply bound the range of a
given real function over an interval [5]. For rnon~
tonic functions these boumh are eaay to find. For
complimted functions [nter~al Arithmetic methods

compute overl} Peisaimbtic over-animations of the
bounds and are uaelean in the praent context.

The interval nearch approach outiined iii thin pn-
per has been previously suggested in [8] using prin-
ciples of genetic algorithm. Here we examine this

apprwh in more detail and uugged. some modifr-
catiom for improving the efficiency and robumtnaa.
We alao compare the previously p:opwed interval
bed GA to the proposed modified approach. In
oummbry, the evolutionary interval march proce-

d~re iB initialised with a population of interval vec-
torn. Each mch interval vector repracnk a hyper-

rcctangle in the parameter space. Function ~ to

be optimimd is then evaluated over these interval
vectors. In the previously -uggeeted approach [6]
the evaluation of ~ is carried out at the center of
the hyper-rectangle, in the proposed modification

a local search methods h 4. The initial popu-
lation haa Iargat interval widths vectom covering
the whole domain. As the evolution of th= in-
terval procA using pnncipla of evolutionary al-
gorithm, the ak of hyper-rectangla u rmluced.
Principle similar to nimulated annealing u h in
the ulection procaa. During the evolutionary P
cas, the crcmover ●volutionary qmrator combinca
parta of th- hyper-rechngla to form new hypcr-
rectangla. At tima the c~ver operator also gen-

erata new hypcr-rect.m.@s hy taking intersections
and uniom of tha search hyper-red.anglu. The
mutation creata new hyper-rectangla aa aeuch
proba in the paremekr mcarch apace.

II. INTERVAL EVOLUTIONARY SEARCH
ALGORITHM (IESA)

Interval Evolutionary search Algorithm (IESA) bor-
rows idea from uveral other randomised methods.
The Aructure of IESA iE M on evolutionruy al-
gorithm with inkrval repr~ntatiom. It ho com-

bined ideas from mimulded annealing and hill cl.imk
i~g (local optimisation) in the evo!utiona.ry opcra-
tora. IESA conaisto of interval representations, irri-
tiahsaticn, fitnm cvrduation, and evolutionary op-
eretora of Reproduction, Crossover, Mutation, Local

optimisation and S+ctiou.

A. lntewa.1 Repre#cntatio~

The echema theory proposed in [15] give valid moti-
vation for the use of binary ~tnng for the repreaen-
tationo of solutions in the population of nolutions.
Thi_ rntimi.xen the number of schemata available in
the evolutionary search. This also incr~ the size
of the search space u each parameter in the objrc-
tive function in encoded u a binary string. Higher
precbion can be achieved by incre~ing the number
of bits. On the other hand, thin does not lead to a
natural coding of the problem. The need for bet-
ter accuracy in the location of minimum SUggeata
the we of real-valued solutions in the population of
nolutiona. The repraentational issue in theur, other-
wise very similar algorithms hao lead to the develop

ment of two evolutionary ocarch paradigms, called
Genetic Algorithm (G}.) and tvolution strategies
(ES), The binary vu. real representational issue is

addrms.ed in [2].
In lESA the population of solutions, P =

{KI, .. . . Ii@}. Here P is a fret of interval vcctorn ~,
where, vector z = (~1, .. .. @m) is a n dimension in-

terval search vector of ,“ n-varialde function j(;) to
be optimimd. Notice here that the furction ~(ii)
be’.ng optimised in real-valued and the optimum i?
that we are interested in ie also a real-valued vector.
We are simply uning interval vectors in the sear~h
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P~ though the fhml ~iaexpeded tobe
● real-valued vector. hcb jth interval oomponent,

Zj of_ ink- aCU& vector, & u da WItb
th~ V’allla W, *j = (~j~%jl~~)~ wh~ ~j,tij
and ~; ia Lhe lower, center and upper point of an

~tcd &j, MK~ t~t ~j < ~ej s ~~ . The ~

~~j=~~-~j,bthetititikti~j and

chaoga adaptively during the d pmcas. The
outline of the algonthrm ia given bdow.

B. A1.yn+tbm

iDi.ti4& p(o) = {31(0),..., ap(o)};
●et idi.d ti~w, T;
aei W widib, w;
cvakate P(0) : {@(ii~(0)), . . . . @(dj(Cl))};
while (T # t~ue) do

cnwmuer P (t) = re. (F(t));
mutate/mcgm F“(t) = -P (P’(t));
local opt PLq,(t) = {qrq(q), .--, q%(~))};
select P(t + i) = ue, {~Lqt(~)}i

Up&k widthJ, ,
update temperralure, T;

t=t+l;
end while

C. Xniti.alizaiion

In the initial population, P(0) = {=1, .. .. 5P} u con-
structed by choaing p random interval search vec-
torn. Each random interval -ch vector, & =

(41 , ....%), h coutruct~ by chq ~ ran-
dom cenccra, ~ej, for each the interval components
~j,~ = 1, ..., n. The initial widtba, wi), of each in-
terval component &j, j = 1, .. . . n, iE Mt to the ske
of the whcJe domain over which /(S) is to be opti-

mised.

D. Fthes8 evaluation

At iteration t in the evolutionary procaa, fitncm
evaluation asaigns a fi tnas value to each individual
in~erv~ s.carck vector, ~ = (all, .O.,a), i = 1, ..,1P!
in the population P(t). Fitnma ●valuation in a crit-
ical part of evolutionary acarch paradigm as this
is the only i~format, ion the evolutionxy algorithms
uoc in the march process. In the pracnt context, we
arc to aeaign & fitnaa value to each interval wcarch
vector, Thim requirca evaluating the objective func-

tion ~(d) with interval pararnetero. The catimation
of bounds of the objective function using interval
methods can be used an !ltnew value. To get sharper
L. mdm, thin proccaa rcquirca the function to be in
~cntcrcd form [6]. AO no a priory assumptions are
made about the form of the function, converting an
arbitrary function to ita centered form iu difficult,

Also In cmsca where function is not know, interval

mctkb cazmot he d to find &c kundt.
A heruiatic approach to hod estinwtion u uacd

here. Before the beginning of t?a●volutionuy pro-
cag, fitn~ of thm inter-v-d prmet.er vectors u d ,-
tined by evabting the objective function at the cen-
kr of the initial intcmat watmm In the ●bequmt
●volutionary process the Icul optko.isation procaa
returns u attic of the bounds (lower or upper
for minimbt im or ti ~n) of the objativc
function over the interval vectors. Thoug.b thcu

boundJ may not be correct at the &g-inn:ng due

to large inkrval widths and complicated function
properties, the procea of DCChlC~ intcrv’d widthm
over time and a wlcction approd aimi.hr to rirnu-
lated annealing helps in atimating reaammbly cor-
rect bounb aa the population evolves. The “mtmd
parmnctcr vectom at these atimatcd boun& (local
optima) arc then ■bjcctcd to c~vcr and mu~
tion operators. This ●volutionary procam contin-
uca for prcdetied number of generations ‘m the
cca.rch of the global optimum.

Any eftkieut 10CAImarch protean can be uacd to
cntimatc the bcm.ncis. Any Ncb atimata will al-
ways improve the search. The critical iaaue here is

how ef%cicnt it i.mto compute leawnably correct G
tirnata to guide the ecarch. Caution u to k tien

in using the atirnata amthey cm.ld be totally wrong
in the beginning of the procea and pokut~ search

regiom C- be eliminated completely at the begin-
ning of the evolution. Mutation operator help re-
cover from this situation.

E. J%ohiwua7y @?do?8

Many typa and vcraiom of evolutionary opera-
tors have been propod in the ●volutionary search
literature. We UOCCIthe opcratora reproduction,
croaaovcr, merging, mlltation and u.election eug-
gcated in [8].

E.I. Reproduction

The rcyoduction operator p,, selects two parent
interval nearc; vectoml & and iik, 10 generate an
insta.lce of a new offspring interval vector to be
used by the crossover operator. ‘rhe aelcction of
parent interval vcctorn iur reproduction is rrmrie uw-
ing Boltzmann distribution an,

(4)

Herr ~(6i ) is the fitness value of the interval vector
hi, and 2’ iE the tcrnpcrature. Temperature T in
the Boltzmann distribution controhr the uniformity
of the selection of parent interval search vcctora, At
the beginning of the ucarch proccaa, with high T, the

parent selection is uniformly random over the whole
domain, This rceults in having the same ~l~tioil
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ImAbility for all inkrvab in the population. h
temperature T it deuumd the =Iection of puents
tbr reproduction narrow- down to moat promking
rqgioru andtitieprenhonly mmn.gti
intervals which are better. Ucing Boltmrum &atri-
buticwr* has uhntage of not having to scale the
fitnem function valua [8].

Es. Cmuowcr

Tbim evolutionary operator gcncrata a new inat.ante

ofintervd-vector,-~brnt- ptinkr-

val_ vatom, % and -j, mkctcd for reproduc-
tion, by swapping their C.ompnenti A multi-point
~ver is uad in generating new otbpring interval
* vector. The ~- ~~j,j = 1,..., rt, of b
interval component ~fj in the offipring interval vec-
tor, ~f, in choun with wune probability horn either

the center, ~~. or d~ of the pment int.erd vwt.orm
& d &. ~he ti~tb, w~jl for ofip@ iDtiA
vector - tigncd tbe valu= of tlv corresponding
width of the ~nta, =lated in above prww.

d~J , WJj =
{

qj , qj with probabfity 0.5
Ujj , Wkj with probability 0.5

(5)

E. 3. h4egiug

CkamiOnally, with come probability, the merging op
erator u applied in the evolutionary procen. A new
o%pring irked search vector ia generated from
two parent vutora selakd by the reproduction OP
crater by kki.ng the intemcction (when not empty)
of the h yper-rectangla they represent. This oper-

ator pointi out mat promising regions of the d-

main that the algorithm cncountern in the search

proc- [8]. Probability of application of this oper-
ator iE kept low.

E,~. h4ut&”on

This operator only modif% the center of interval
components in a interval n.earth vector and doen not

~ange the their widths. This generab interval vcc-
tom in the new regiona of the search apace. Muta-
tion ia the only operator that generatea “new genetic
material” in the evolution~y pr~as. Crcwaover
and merging ucc exinting “genetic material”. Each
interval vector in ~he population k subjected to Mu-
tation with mutation probability, p.. Once selected
for Mutation, each of its component im nckcted for

Mutation with probability O.S. If the componert
is selected for Mutation the center of the interval
component is mutated within the aanociated interval
or outoide the interval (in the whole domain) wi,i
some probability, In our implementation within in-
terval mutation probabilit~ is kept 0.8 and outside
interwd mutation probability b kept 0.2. Mutation
within the interval (wh~ width reduces over time)
or within the whole domain help in overcoming the

problem amocded with tied sise population where

- generation fak in the name old trap and alowa
the p~.

E.5. L-ocA U@m&&iola

During the fuat cycle of the evolutionuy p~,
the local optimintion p~ Aarta from the ini-
tially generated random aolutioru. These initial

points have i.nk~ widths as large as the whok
domain. The kcal optimktion p~ return9 the
local optimum found. T%= local optimum become
the mlutiona of next generation. In sukqucnt gcn-
eratiom the local optimisation p~ is _
with c- and mutikd vemioru of the Id op-
timum found in the prcviow generations. The local
optimisation p~ is similar to the one sugguted

in [71 except that the raolution Parmeter b made
adaptive. The adaptive redution pmarneter im-
prova the ficiency of the load optimiser by re-
ducing the numtwr of function ●vaduatiom at the be-
ginning of the emlutionary proccq vThich in many
casm are local optima. The resolution parameter
i8 reduced -lowly as number of generation increase
and the main algorithm crpecta inore and more ~
Iution from the local optim.iaer procedure. The basis
local optimiser ueed u given below. Here param-

tir ReMJufion u dccreaud slowly as the evolution
proceeds.

iaitiahze {
while I ii 1~ Resolution

i&r=O

while J(S + u~ > ~(~) and iter < MAXITER
ii = NewDirection(~

iter = tier + 1
if J(Z + vi > ~(;)

ii = 6/2
eisc

5= s+;
; = :!li

return Z
Here ii ia a .-tep vector and grown or mhrink~ ar-
cording to the recent progrcsa mark. MA XITER
determincn iteratlonn at cuh ntcp before Bhrinking
the vector. Rcsdution is the mlaikat ntep sise al-
lowed [7]

E. 6. Selection

At iteration t of the evolutionary proccna, af-
ter applying reproduction, crotwover, merging

and nlutation to the p interval vcctorn in
P(t) = {~l(t), . . . . A@(t)}. After reproduction,
crmuover, merging and mutation, .4 new off-
spring are created from P(t). Let P’(t) =

{~~(t), ...,~~(t),~~+,(t), ...,~~+~(t)}. TO create h

population, P(t + 1), p interval vectoru form P’(t)



arehwonthedection ~udng
Mctropdh crituion. If &(t + l), n = 1,..., w m
tbentbinti i.nnert~a.ticm cfintew8188arch
vectom d f u ● rudom nu.mbu in [0,1], Lhen,
A(: + 1) ia

where p@Jt)) u

( )P@Q(t))= q J(-);- f(w)) , (7)

where n= 1, ..., p. The Metro@s criterion prefers
interval much vatora with better fitn= vduea, but
& Id minima to be overcome by accepting
uphill movu [8].

B. 7. An- of Tempmuture

In the above ●volutionary opcratorm, temperature

T, controb the reproduction and uekction p~
With high tem~rature, random search N= place
while with very low temperature algorithm usually

geta trapped in a local optimum. A simple method
of acbptive tunpcrature mrggc9ted in [8] i9 A.
The temperature T(t) b uplated afkr N iterations
U, T(t + N) = T(t)/a. The parameter a < I h
ikcd. Every time the tempemturc u updated the
new temperature is compared with T_.= . G, whine
Ttim <1, iJ a and fied ~ameter and G u the
geometric m= of the cli.flerencu between the fit-
nm function valua in the current population and
the optimum fitn~ value, ~(t. ) up to the moment.

(,=1‘f(a-)))*G =fi(f(ij (8)

In thisprocaa, if T(t + N) < “in -G, then,

‘T(t + N) = max(G, I ~(&) 1) in chaen and the
search i- continued. The name method is used in
the initiali~tion process.

E.8. Updating of Widt.ha

The width- of intervah components of interval
oearch vcctom are updated aa every time an interval
-arch vector & is better than the current optimum
&, it- width is changed u follows [@]:

( Id.j-&jl
UJij=UJij. 1+

/1. lT18.Xjld.j-&jl ) (9)

TbiB increasca the widths mostly in the direction of
current optimum.

III. EXPRR.IMENTS AND RESULTS

We demonstrate the performance of the interval

based evolutionary cemch otrategy on a actof well
known optimisation problems. That functions have

baentyp!idyltmalw benchmuk functioamin evahl-

~mqk”~n dgorithrm.Jhtaib on * M
unctmcu are given in mction IV. The tst function

arerefermd tohytheirnama or the authora who

il.rdpcopme dkpmkknaaabembrnuk prob-
krnw Tbctutauiti conkinsfu.nction9 th.stare

● Continnons d DkQrltinucw

● Convaadc enare
● unimOdd d Multi-lm%kl
●r.lilMUUldnOdinem
● Lowmncmimd and High Dimenaiod
● IMUmhbtk and ctochutic

Fte8ult9reportd overtite9t functions are a--

@ over 20 independent runs with diffarent ra-
dom initial populatku. In all the exampl+ global
optimum u know and thio information was uud by
~ion criterion. Ln all camcs, optimum found
waa required to be within 10-C to the true global
optimum along all c00rdin8ta.

Following puametcr values were used in tating

the pcrfocrm.nce. Population sise p = 20, ~ver
pro~ity pe = 0.2, merging probability ~ =
0.005, Number cf generations before U* tem-
perature N = lCU), Number of gcneratioru More
updating widths = 50, ‘hmperaturc update ccdi-
Cienta = 1.5, and width upiatc &cient a = 2.

%me cet of paramctcrm were u.d in opttiing all
test functions.

It wam ohurvcd thatin mat caau the algorithm
is able to find good direction for march in very few

generatims. Mast cycla are taken to get the re-
quL-ccl precision of the optimum. For example in
Ackley’s function f12,the optimum clcme to true op-
timum by 10-1 waa found consi~tently in few hun-
dred function evaluations along all coordineta. The
large number of evaluation requird after th.ia point

arc to get to the required quality of optimum which
ia m cloac aa 10–s to true optimum.

In co:,lparicon, a multi-population genetic alge

nthm, PGA v2.7 [31] wao med. Following pararn-
eterm were uc.ed in PGA. Number of populations =
5, Number of individual in each population = 20,
Number of bit per variable = 16, Rank selection wae

used. Mutation rate = 0.005, Twmpoint croaaover
wu used and Migration interval = 10, Same set
of ~ameters were uoecl in optimizing all teat func-
tions. No convergence situation is indicated by a
U?n,

The table mmmari.zen rcaults over a oet of bench-
mark functions. In the first column, f(S) inthe

name of the functions, in the uecond column, n in the
number of dimensions, in the third column, IESA in-
dicata the number of function evaluation used by
the Interval Evolutionary Such Algorithm (IESA)



witbcdtb6bod o#min&l ptxmmelltnm
rnthbd@Mm.rnise vdMtedattbe cenkofthe in-
t.tmdvectorm lnthefou.rth cda Pt3A idiuta
he numhu d fu.nctii ev81tnLion8 tib~
h81kl CkdKA.lgOfithm [mj. I.ntkfifkh d-,
IESA+HC indkata the numhtr d frmctim emk-
at.iOns requiNd hythelnt8mal Bvoh3~search
A&ithm (lESA) with the H optbkth ~
-

Piithing tonotiee intheta.hlc rntharckstna
of& I.E9A+EC~. Itcon~inall~
while thelE3Ad PGAdomt. lnnunycMu
tlM 1E!3A+HC qwoach momkr ofmagnituck &ter
than the IESA d PGA appmdI. Lu the ~ of
~r the Id pcrfonname of IESA+HC apprmch m
k dtritnlted to the Iqe number d lad Optium
At the end of every genertion, the pqmlation in
IESA+HC approd ~ of Local optim4. Thex
uethen~md mutated and unttothelucal
optimiser in the next generation. If the popuhtion
* m made dynamic, the IESA+HC approach will
colkt more and more local optima atawry genarw

tion. Any attumpt in generating new points tkr ●way
km th- colkted local optimum will incrcaM the
efECiency in ti -. Due to kd ti population
in the p~t implementation individuals in the new
genemtiom fall back into the snme local optimum
they M from and p~ u halted or rnde
slowly. Example of much situation is men in Shekel’s
Foxhole function, ~6 .

~
fl

f2

f3
f4

fs
fo

f?

f-
f9
flo
fll

flz

f13

f14

fls
f16

15
30

2

4
5
2
4
8

16
32

2
2
4
8

16
32

2

4
8

16
32

2
2

m
2
4
8

20
15
30

4
2

10
4
9

16—

212Q4
50012

Sm
?

2420
W4’o

35278
?

m66
?

12236
16513
42749

T
?

la297
28226

?
?

41901
1956

08981
7200

9

?

?

26437
?

28865
11462

?

41431
1670
2280

PGA
2212-

17626
b0316

?

1967
?
?
?
?

?
2212

?

7935
17240
45475

?
?

7900
18620

?
?

2312
435s

117200
3811

?
?

170000 (?)
48033

113950
6675
4762

?

20870
?
7

IV. TEST FUNCTIONS

The tat functions used in
algorithm are given below.

● fl : Sphere hfodel [1]

n

i=l

IE3A+HC
w

561
1313

343
27172

6.69
78

117
242
511

10s4
3461

92
207
837

22970
66297
.32934

50508
59464

1262
258
178

25407
113
405

1375
27 \30

1699
6057

22
675

7627
75437

975
4165

kding the optimization

(lo)

n = 30; –5.12 ~ ai < 5.12; rein(J) = f(O, .. ..O) = 0,
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Th8SpA4Teaddisamodh, un.imdd qmmetrk
mdcloanot havemypmblemaefa ricige, p4ateau

orafouOilL Tbepdormma onthiarndel -isa

rneaauc of the general e&iency of the optimbLion

algorithm.

● fa : RoJdnuk ‘8 fincti.om [1]
m-l

f(~ = ~ lM. (%+, - z:)’+ (% - 1)’ (11)

-5.12< & < 5.12; rn.in(f) = ~(1,...,l)= O.
This u a cent-inuoua, unirnodal and hi-quadratic

functictn(Figure 1). It has a very nurow ridge with

● very sharp tip and runs around a paraboh The
~ of my ~orithrm u very S1OWand are
unable ta discover gnod direction.

f(ptl+fpd (12)
i=l

–5.12 < ~ < 5.12;
rein(f) = ~([–5.12, –5), . .. . [–5.12, –5)) = O.

6

4

2

-$’

++

This u a repreuntitive of plateau problem with
linear and diacontinuoum properties. Flat surfaca
do not give any information aa to which direction in

favorable. If the algorithms does not have variable
step cise, optimizing functions like this u a problem.

10

5

0

I
-51.
2

2
0

-2 – .2

‘1%.is u aimpk fiinction padded with noise. The

G _ nok resu.lta in rlitkent value of the func-
tion at the aune pint when samplal at mcparate
inab. Tbia maka it ● gad noise raiatance
tat for optimisah .on algorithm which is a n~

part of many real world probkma.

● fb: Shekd’~ Fod.olu [1]

‘-32 –16(*,) =
(

0 16 32 -32.. 01632
–32 –32 –32 –32 –32 –16 .. 323232 )

K = 500; f(~ljl~aj) a Cj = j;
–65.536 < % ~ 65.536 ;rnin(/) = J(–32, –3?) = 1.

0

-s) – -m

This in a continuous, nonl.intir, multimodal func-
tion with several local optima. It iE difficult for op-
timisation algorithm becmme it haa large plateau
with equal function value with 25 narrow holcn
which have a different function value at their bot-

toms. Many algorithm get stuck in the first hole
they find.



● f“: Pklu8 &ctie8 [q

f(q=&O.M[lmll%u (1s)
)=1

(j-l)h<8~jkh=m/4;

-f) = f(-l<i~m 141< 10-q= o.
Tile P&.mfu.nctk bMlugenumberd94 m

* =k dw grdllall} ~ kwards the
glohalminilmm neutlwarigill.

● fr: Po?qin.e - N

f(q = 104. (c + 1.s2) (18)

c= lo-’==, ]* ;

z=ltP(n-c) -2. [’*]
mirl(f) = 1(0,...,0) = 0.

in this function, every time [l@(n – c)J i9 an
●vennumbcr thtreia alocalmini.rnurq Ieuiingto

wr-ylarge numberofhxal~ F“&e. 2 abowm
the function and the location of t.be globl opti-
mum. The value of ~(z~ decrcaau slowly towards
the global minimum (the origin). The high density
of local minima here b ● major problem for many
optimisation algorithm.

. f.: s- fimctiou

f(s) = l+mi.na(zl)+Ei.na(za) -o.lezp(-a;-s:) (17)

-10< z,,z~ ~ lo; rnin(f) = f(o, o) = 0.9.
Tb function u continuo~ and multi-modal with

large number of local minima with very ●nail dif-
ferent in thar valua. Figure. 3 chows the function
and the location of the global optimum.

● je: Gobt&n and Pm”ce

f(s) = [1+ (z, + z~ + 1)2(19– 14Z, +3Z;

–14Z2 + 62122 + 32;)]

.[30+ (2zI - 3Z2)’(18 - 32z1

+12zi + 48Z2 – 36Z1Z2 + 27zi)] (18)

–2 < z~,z~ ~ 2; min(~) = f(O, –1) = 3.0.
Ibio function in continuous, multi-modal and non-

linear. Figure. 4 shown the function and the loca-
tion of the global optimum. The problerm optimisat-
ion algorithms face with thin function in the peak
response of about five ordem of magnitude greater
in the neighborhood of the optimum.

● jIO: Schwejel’s kknct~,va

/ ,2

(“)f(i) = ~ S aj =zTAz+bT
i=l j=l

(19)

x 10’

31
@

1

12
I@

-la -1~

Tbu u ● continuo~ and unirnodal function. The
difficulty here u tlmt uambing along the coordinak
U= only given poor rate of conmrgence, since the
gradient oftbefunction rnn~orienkd alongthe

ua. Tbev81ky buwiamuchrmrrow (M Comped
to bbrock’s function) due to the worsening con-
ditim of the form matrix A with increasing n [29].

(20)

n = 2;-5.12< ~ < 5.12; rein(f) = f(O,..., O)= O.
This k a smlable, continuous, multi-modal test

function which u made from the Sphere mode! by
modulating it with Accm(2xz, ) [29]. Figure. 5 shown
the function and the location of the global optimum.
Far away from the origin this functiono looks like the
Sphere mode~ but with small.r z, the effect of the

modulation grows and dorninata the ehape. The
multi-modalily here pr-nt substantial difficulty to
many optimization algorithms.

f(;) = -Zoexp

(-”’m

( )

‘~x~ 4 ~COS(2*Z~) + 20+, (21)
n i=l

n = 20; –05.536 < Zi < 65.536;

min(~) = f(O, .,.,0) = O. n = 30; –30 < z, ~ 30; rein(~) = f(O, . . ..O) = O



m

29

10
1-
I

-s–+0

This rnagendisd *t of ● multi-modal
function ~ [3]. Thi9 function b been trandormed

mlchthatthcglobl mininmn Iis loc8tecl at the ori-

fi.

● fl~: Nowhre D@di.able ~ [17]

k=l d

n=4; /9=60; -1 OOO<G < UKKl;

*f) = ~(~,..., O) = 1- l%is frmction @ = m)
u continuous but nowhere differentiable. It b a D
dirnemion variation of contraction mapping defumd
in [171. This tat function hM fik number of
l.lXdrnhirn&

● f14 : GTieuad 1

(23)

cf=200; n=2; -loo< &< loo;
mi.n(f) = f(O, ....0) = O.
Figure. 6 ahom the function and the location of the
gloid optimum.

● fn J CoJudk

f(s) = 100- (a, - (ag)) “(21 - (38)) (24)

+(1 –z13)*(l -ao)+90. (z3 -(kr;~)

+(1 – az)a + 10.1 ● ((al – 1.)2 (26)

+(ZS – 1)2) + 19.8 ● (Z1 – 1) ● (a3 -(~)

rl=4; -looo~a<looo;
tin(f) = f(l,..,l) = o.

1

1 ~1067 0!;5 i a
i i

7 0.0456 ‘;;
2 0.1947 0.6 8 0.0342 10
3 0.1735 1 9 0.0323 12
4 O.leoo 2 10 0.0235 14
5 0.0844 4 11 0.0246 16

e 0.0627 6

. fla: Neud Network Parity Function

Inthisbq weighofhstmdud 2input2hiddcn
and one output nda neural network archikcture are
found by tinding the optimum of the error function
dc6ned over ● model d the parity function. The
total of 9 weights are rmd in the network. The
emolfunctioni9

(28)
i=l

rnthe8um of8qu&red error betmUn theactud out-
Puttjuld theprodrleldo utputo(wiqisover 4 pat-

tcsm of the prity (XOR) function. Similarly the
wdghti of 4 input 4 hidda aad one output rmle
neural network were found to mini.mk the error for
the 4 input parity funrtion. The number of weights
here are 2s.

V. CONCLLHONS AND FUTURE RBSBARCR

One of our ~ god u to ube the advankgu
of interval computations in search and op~
tion algorith.uM without any auumption about the
underlying objative function. Muy kchniquu
from mathematical progmrnming, atatiatia, ma-
chine learning, neural networb, and evolutionary
&orithm have k pti to be robud in solv-
ing ● wide variety of optimktion problems. Thae

@ul.iq- cAuheerkndd ktiadwmtage of
kchniqua horn interval computations.

An e5cient approach that combinu the ficient
strategy km Lntervd Global Opt.hn.isation Meth-
d and robwtna of the Evolutionary Algorithms
u proposed. In the propad appraxh, eearcn be-
giru with randomly crcakl interval vectorm with in-
krval widths equal to the whole domain. Before
the beginning of the evolutionary proc.aa, fitnesn of
thw inkrvd Parmneter vectorm io defined by eva-
luating the objective function at the center of the
initial inkrvd vectoro. In the cubaequent evolu-
tionary procua the IOCAIoptimisation proccaa re-
turns an estimate of the bounds (lower or upper

for minimisation or maximization) of the objective
function within the interval vectors. Though these
boundo may not be correct at the beginning due
to large interval widths, the procem of reducing in-
terval widths over time and a selection approach
mimilar to ~imulakd anneding helps in atimating
reasonably correct bounds. The interval parameter
vectom at th~ estimated bounds (local optima) are
then subjected to crouover and mutation. This ev~
lutiomry procem continucn for predetermine num-
ber of generations, Using an ●lllcient method to find
the bounds of the function in the eubdomain would
add -ignificant power to this approach. In the pro-
posed approach a simple hill climber in umcl for this

purpose.
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In the prop9A approach, though the varikd
nature of the Interval Global Optimisation Meth-
ods i9 not p~, empirical reauita over stan-
dard bedunark fUKtiOM baa lbO~ to have pm

servedthe ef6aency and robtincm propertiu of the
two apprcacha. The propmeci approach u *-
marked against Parallel Genetic Algorithm and ia
otmemed to be more robust and in come ~ order
of mqpitude emaent.

In conclwion, it i8 okrvexi that ertemion of
one evolutionary algorithm with a local opt~
tion p~, aimu.iakd annealing type Amtion ~
H and interval mutation opxator significantly im-
proveE the ef3ciency and robuatrra of the cearch
proc-.
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